June 17, 2014: Superposition | June 16 | June 19 | 2014 | FOTD Home |
Fractal
visionaries
and enthusiasts:
Today's image is named "Superposition". This name has nothing
to
do with the even more mysterious quantum world. It is a
simple
overlaying of the Mandelbrot and Julia aspects of Seahorse Valley,
calculated without using multiple layers.
The two bright beige spikes intruding from the north and south edges of
the frame are part of the Mandelbrot aspect of the valley.
The
small bluish figure centered between the points of the spikes is a
somewhat distorted version of the Julia set of Seahorse
Valley.
This is the first fractal I have found that shows both 'seahorse'
aspects in their proper places with so little distortion.
The art and math ratings of 8 seem about right, at least to
me.
The calculation time of 1 minute will pass in a semi-flash.
The
flash may be eliminated by checking the finished image on one of the
web sites.
Lots of sun and humidity made the temperature of 90F 32C feel like
midsummer here at Fractal Central today. Storm clouds were on
the
horizon most of the day, but none came close enough to bring cooling
breezes. The fractal cats celebrated the conditions that make
cats happy by stretching out on the coolest places they could
find. The next FOTD will be posted in a reasonable
time.
Until then, take care, and where is a media news outlet without an
agenda?
Jim Muth
jimmuth@earthlink.net
START PARAMETER FILE=======================================
Superposition { ;
time=0:01:00.00 SF5 at
2000MHZ
reset=2004 type=formula formulafile=basicer.frm
formulaname=FinDivJulibrot-2 function=recip
passes=1 center-mag=-0.0410392/0/0.4436728
params=88/0/88/0/-0.75/0/0/0/-10/1000000
float=y maxiter=1500 inside=bof60 logmap=yes
symmetry=xaxis periodicity=6
colors=000zzzmmmcecUZUKUKAGE5AC34B02A00C03F26I49K6\
AP8BU9CW8CX7DY7E_6Fa5Fc5Ge4Hh3Ij3Il4Lj5Oi5Qh6Tf7Ve\
7Yd8`h9bm9erAgvBjzBmvCorDrmDthCocBkZBfVAbRAYR9UR8P\
Q8LQ7GQ7CQBDREDRHDSKDSODSRETUETXET`EUcEUfFViFVmFVp\
FWsFWvFWtEYrE_pD`nDblCdjCeiBggBieAjcAla9m_9oZ8qX8r\
V7tT7vR6wP6yO6zMBvLFrKJoJNkHRhGVdFZaEbYDfVFgUHgTJg\
SLgRNgROgQQgPSgOUgOWhNYhMZhL`hKbhKdhJfhIhhHihHjgIj\
gIjfIkfJkeJkeJldKldKlcKmcKmbLmbLnbLnaMnaMo`Mo`Mo_N\
p_NpZNpZOqYOqYOqYOoXPmWPlVPjUPiTPgSPeSQdRQbQQaPQ_O\
QZNQXNRVMRULRSKRRJRPIROIRPHSPGTQFTQFUREURDVSCVSCWS\
BXTAXT9YU9YU8ZV7ZV6_V6`W5`W4aX3aX3bY2bY1cY1cZ3`_4Z\
_5X`6Va8Ta9RbAPcBNcCLdEIeFGeGEfHCgJAgK8hL6iM4iN2aQ\
FVTRWUSWUTXUUXUVYUVYUWZUXZUY_UZ_UZ`U_`U``VaaVbaVbb\
VcbVdcVecVfdVfdVgeVheVieVidWhdXhdYhdYhdZgc_gc_gc`g\
cafcbfcbfbcfbdebdebeebfebfecdccbbc`acZ`cX_cVZcTYcR\
XcQVcOUcMTcKSY`JXbJWcKVeL }
frm:FinDivJulibrot-2 {; draws slices of
FinDivBrot-2
Julibrots
pix=pixel, u=real(pix), v=imag(pix),
a=pi*real(p1*0.0055555555555556),
b=pi*imag(p1*0.0055555555555556),
g=pi*real(p2*0.0055555555555556),
d=pi*imag(p2*0.0055555555555556),
ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g),
sg=sin(g), cd=cos(d), sd=sin(d),
aa=-(real(p5)-2), bb=(imag(p5)),
p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd),
q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd),
r=u*sg+v*ca*sb*cg, s=v*sin(a),
c=p+flip(q)+p3, z=r+flip(s)+p4:
z=(bb)*(z*z*fn1(z^(aa)+bb))+c
|z|< 1000000 }
END PARAMETER FILE=========================================