November 22, 2010: Feeling the Blues | Nov. 21 | Nov. 23 | 2010 | FOTD Home |
Fractal
visionaries
and enthusiasts:
Today's image shows a curious minibrot, (if this is the proper name for
such creatures), that lies on what remains of the main stem of the
Mandelbrot set when the Julibrot is sliced at an angle oriented 20
degrees from the Oblate toward the Elliptic direction.
To bring the image to reasonable proportions, I stretched it about 4
times in the horizontal direction, which is a little excessive, but
makes the best effect.
In my opinion the image is worth a rating of a 7, not the least of it
due to the coloring, which brings blue to a new extreme. The name
"Feeling the Blues" describes the mood of the scene.
The calculation time of 23 seconds will pass in half a flash, as also
will the trip to the FOTD web site at:
http://www.Nahee.com/FOTD/
to see the pre-calculated finished image.
A mixture of sun and clouds and a temperature of 50F 10C kept everyone
happy here at Fractal Central on Sunday. In the evening, Cassie,
the smaller fractal cat, started growling at something in the yard, but
we could see nothing. Nicholas, the large cat, assured her that
all was well, and after a few minutes, whatever had her concerned moved
on. Meanwhile, my day was average.
The next FOTD will be posted in 24 hours. Until then, take care,
and sometimes a person needs light to see the light.
Jim Muth
jamth@mindspring.com
START PARAMETER FILE=======================================
Feeling_the_Blues { ; time=0:00:23.29-SF5 on P4-2000
reset=2004 type=formula formulafile=basicer.frm
formulaname=SliceJulibrot2 center-mag=-1.575725778\
/0/75.37224/3.9228 params=70/0/20/0/0/0/0/0 float=y
maxiter=3200 inside=0 logmap=29 periodicity=6
colors=00000600800A00D00F00I00K00N00Q00R00S01T02U0\
3V04W05X06Y07Z08_09`0Aa0Bb0Cc0Dd0Ee0Ff0Fg0Fh0Fi0Fj\
0Fk0Fl0Fm0Fn0Fo1Fp2Fq3Fr4Fs6Ft7Fu8Fv9FwAFxBFyCFzDF\
zAGz8HzAIzCJzEKzGKzIKzKKzMLzOMzQOzSQzUSzWUzYWz_Yza\
ZzcZzeZzg_zh`ziazjbzkczldzmeymfxmhwmivmjumktmlsmms\
mmsnmsomspmsqmsrmssmssmstmstmsumsumsvmsvmswmswmswm\
swmswmsvmsumstmssmsqmsqmsqmsqmsqmtsmtumuwmusmvsmws\
mxrmyrmzrmzrmzqmzqmzqmzqmzpmzpmzpmzpmzpmzomynmxmmw\
lmvkmujmtimshmrgnqfooeondomcplbpkapj`picpzcpzcpzcp\
zcpzcpzcqzcqzcqzcqzcqzcqzcqzcqzcqzcqzmrcmrcmrcmrcm\
rcmrcmrcmrcmrcmrcmscmscmscmscmscmscwscwscwscwscwtc\
wtcwtcwtcwtdwtewtfwtgwthwtiwujwtkwtlwtmwsnwsowspwr\
qwrrwrswqtwquwqvwpwwpxwpywozwozzzzzzzzzzzzzzzzzzzz\
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz\
zzzzzzzzzzzzzzzzzzzzzzzzz }
frm:SliceJulibrot2 {; draws most slices of Julibrot
pix=pixel, u=real(pix), v=imag(pix),
a=pi*real(p1*0.0055555555555556),
b=pi*imag(p1*0.0055555555555556),
g=pi*real(p2*0.0055555555555556),
d=pi*imag(p2*0.0055555555555556),
ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g),
sg=sin(g), cd=cos(d), sd=sin(d),
p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd),
q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd),
r=u*sg+v*ca*sb*cg, s=v*sin(a),
c=p+flip(q)+p3, z=r+flip(s)+p4:
z=sqr(z)+c
|z|<=9 }
END PARAMETER FILE=========================================