pagetop 
June 14, 2010: Pint-Sized Quartic June 13
June 15 2010 FOTD Home
 Rating 8

pint sized

Fractal visionaries and enthusiasts:

Today's blindingly fast image is surprisingly simple, yet it delivers more than seems possible in a mere 10 seconds.  In fact it is one of the best quartic minibrots I have ever seen.

The parent fractal is a Mandelbrot set caught well along the way of morphing into the Z^4+C Mandeloid.  Today's image lies quite deep on the negative X-axis of the parent fractal.

The rating of an 8 is justified.  Though the image is little more than a quartic minibrot with radiating arms, it has a certain something that sets it apart from the crowd.

The name "Pint-Sized Quartic" is a play on words that refers to the unusually large magnitude of the image and the corresponding small size of the minibrot.

The calculation time of 10 seconds hardly seems possible, but this is how fast the image runs on my optimized, fractal-dedicated 2000mhz computer.

A mix of clouds and sun, oppressive humidity and a temperature of 88F 31C made things pretty uncomfortable here at Fractal Central on Sunday.  A brief but heavy rain shower just after noon added to the unpleasantness.  The fractal cats suffered no unpleasantness however as they passed the day sleeping on the cool floor.

My day was about average; the same is true for FL.  Unless something goes wrong, the next FOTD will be posted in 24 hours.  Until then, take care, and after the world ends, will the Mandelbrot set still exist?

Jim Muth
jamth@mindspring.com
jimmuth@aol.com


START PARAMETER FILE=======================================

Pint-Sized_Quartic { ; time=0:00:10.26-SF5 on P4-2000
  reset=2004 type=formula formulafile=basicer.frm
  formulaname=FinDivBrot-2 function=recip
  center-mag=-1.188028881200462/0/4.56327e+011/1/180
  params=4/-4/0/0 float=y maxiter=1500 inside=0
  symmetry=xaxis periodicity=6 mathtolerance=0.05/1
  colors=000dKdoMzlKoiIdgGUdEJnZvbD8_IAYNBVSCTWEQ`FO\
  eGDj1MiHZvaXq_WmYUiW7Ni7V2WfRTeVQdZNcbLcfIbjFanC`r\
  4cyA`vGZtMXrSVoYTmmOPiPXfQcbRkdSxbRvaRt8BaAEcCGeEI\
  gGKiKMkOOmSRoWWo_`qcfsgoulyzzzzyszuovqirncmjYhfRcc\
  La_F_U2LU6SX9YTCUU7UUBcQFiGJoRPz8Uz7Zz7cz7hz7mzNYh\
  KYeaZeKZdaZdKUdaUdKUcaUcKUcaUcKUbaUbKUbaUbKUammamm\
  ammamm`mm`mm`mm`mm_mm_mm_mm_mmZmmZmmZmmZmmYaeYaeYa\
  eYaeXafXafXafXafWagWagWagWagVagEahVahVahVzhUziUziU\
  ziUziTzjTzjTzjTzjSzkSzkSzkSzkRzkRzlRzlRzlQzmVzmWzm\
  WzmWzmYzmRzmKzmPzmUzmZzmczmwzmrzmmzmh_mz_mz_mz_mza\
  mzbmzcmzdmzemzfmzumzgmzUmzGmz2mz3mz4mz5mz6mz7mzomz\
  omz5mz7mz9mzBmzDmzFmzHmzMmzKmzImzGzPCzIDzNEzSFzXGz\
  a5ztHzeSzSoz4hz9bzEXzJRzOIzRKzTNzVPzWSzYUz_5z8EzIN\
  zRWz`jzegzgezhczi`zjZzkTzwXzl_zaczRozJfzHZzGRzFGza\
  JzEPzGUzI_zKdzMjzOozQiz4tzRlzTezVmzmZzXEzTHzPJzLLz\
  HNzEPzARz6Tz3WzGYzTUzf_ze }

frm:FinDivBrot-2   { ; Jim Muth
z=(0,0), c=pixel, a=-(real(p1)-2),
esc=(real(p2)+16), b=imag(p1):
z=(b)*(z*z*fn1(z^(a)+b))+c
|z| < esc }

END PARAMETER FILE=========================================