June 14, 2010: Pint-Sized Quartic | June
13 |
June 15 | 2010 | FOTD Home |
Fractal
visionaries
and enthusiasts:
Today's blindingly fast image is surprisingly simple, yet it delivers
more than seems possible in a mere 10 seconds. In fact it is one
of the best quartic minibrots I have ever seen.
The parent fractal is a Mandelbrot set caught well along the way of
morphing into the Z^4+C Mandeloid. Today's image lies quite deep
on the negative X-axis of the parent fractal.
The rating of an 8 is justified. Though the image is little more
than a quartic minibrot with radiating arms, it has a certain something
that sets it apart from the crowd.
The name "Pint-Sized Quartic" is a play on words that refers to the
unusually large magnitude of the image and the corresponding small size
of the minibrot.
The calculation time of 10 seconds hardly seems possible, but this is
how fast the image runs on my optimized, fractal-dedicated 2000mhz
computer.
A mix of clouds and sun, oppressive humidity and a temperature of 88F
31C made things pretty uncomfortable here at Fractal Central on
Sunday. A brief but heavy rain shower just after noon added to
the unpleasantness. The fractal cats suffered no unpleasantness
however as they passed the day sleeping on the cool floor.
My day was about average; the same is true for FL. Unless
something goes wrong, the next FOTD will be posted in 24 hours.
Until then, take care, and after the world ends, will the Mandelbrot
set still exist?
Jim Muth
jamth@mindspring.com
jimmuth@aol.com
START PARAMETER FILE=======================================
Pint-Sized_Quartic { ; time=0:00:10.26-SF5 on P4-2000
reset=2004 type=formula formulafile=basicer.frm
formulaname=FinDivBrot-2 function=recip
center-mag=-1.188028881200462/0/4.56327e+011/1/180
params=4/-4/0/0 float=y maxiter=1500 inside=0
symmetry=xaxis periodicity=6 mathtolerance=0.05/1
colors=000dKdoMzlKoiIdgGUdEJnZvbD8_IAYNBVSCTWEQ`FO\
eGDj1MiHZvaXq_WmYUiW7Ni7V2WfRTeVQdZNcbLcfIbjFanC`r\
4cyA`vGZtMXrSVoYTmmOPiPXfQcbRkdSxbRvaRt8BaAEcCGeEI\
gGKiKMkOOmSRoWWo_`qcfsgoulyzzzzyszuovqirncmjYhfRcc\
La_F_U2LU6SX9YTCUU7UUBcQFiGJoRPz8Uz7Zz7cz7hz7mzNYh\
KYeaZeKZdaZdKUdaUdKUcaUcKUcaUcKUbaUbKUbaUbKUammamm\
ammamm`mm`mm`mm`mm_mm_mm_mm_mmZmmZmmZmmZmmYaeYaeYa\
eYaeXafXafXafXafWagWagWagWagVagEahVahVahVzhUziUziU\
ziUziTzjTzjTzjTzjSzkSzkSzkSzkRzkRzlRzlRzlQzmVzmWzm\
WzmWzmYzmRzmKzmPzmUzmZzmczmwzmrzmmzmh_mz_mz_mz_mza\
mzbmzcmzdmzemzfmzumzgmzUmzGmz2mz3mz4mz5mz6mz7mzomz\
omz5mz7mz9mzBmzDmzFmzHmzMmzKmzImzGzPCzIDzNEzSFzXGz\
a5ztHzeSzSoz4hz9bzEXzJRzOIzRKzTNzVPzWSzYUz_5z8EzIN\
zRWz`jzegzgezhczi`zjZzkTzwXzl_zaczRozJfzHZzGRzFGza\
JzEPzGUzI_zKdzMjzOozQiz4tzRlzTezVmzmZzXEzTHzPJzLLz\
HNzEPzARz6Tz3WzGYzTUzf_ze }
frm:FinDivBrot-2 { ; Jim Muth
z=(0,0), c=pixel, a=-(real(p1)-2),
esc=(real(p2)+16), b=imag(p1):
z=(b)*(z*z*fn1(z^(a)+b))+c
|z| < esc }
END PARAMETER FILE=========================================