pagetop 
January 20, 2011: Ancient Symmetries Jan. 19 Jan. 21 2011 FOTD Home
 Rating 6

ancient

Fractal visionaries and enthusiasts:

Today's image is a scene near the large minibrot on the main stem of a distorted Mandelbrot set.  Actually, the main stem of this parent Mandeloid is infinitely divided, with assorted parts of several large minibrots visible.

Do not be deceived by the poetic name "Ancient Symmetries".  I wrote it in a spate of poetic inspiration, but the image fails to live up to the promise.  (The FOTD writer believes in truth in advertising.)

The rating of a 6 is merely adequate.  There is nothing outstanding in the image to make it worth the calculation time of over 6-1/2 minutes, so I recommend viewing the finished image on the currently active web site at:

http://www.emarketingiseasy.com/TESTS/FOTD/jim_muths_fotd.html

you also might want to check the original FOTD web site at:

http://www.Nahee.com/FOTD/

It is currently not up to date, but one of these days Paul will be up and about, ready to bring things up to date.

My own FOTD web site is still a work in progress, but progress *is* being made.

The temperature of 41F +5C here at Fractal Central on Wednesday was reasonable, but the cloudy sky and melting slush made things unpleasant.  Early in the day the fractal cats decided on the shelf by the heat.  My day was about average; FL's also.  The next FOTD will be posted in 24 hours.  Until then, take care, and wait for the sunrise.


Jim Muth
jamth@mindspring.com


START PARAMETER FILE=======================================

Ancient_Symmetries { ; time=0:06:37.28-SF5 on P4-2000
  reset=2004 type=formula formulafile=basicer.frm
  formulaname=MandelbrotBC3 function=ident
  center-mag=-1.765864849188624/-0.00353536043588884\
  /1.92565e+009/1/85/0 params=2.001/0/0.001/0 float=y
  maxiter=3600 inside=0 logmap=668 periodicity=6
  colors=300E2LE7NB9OBBRAET9JUCR_F_fZnscszhzzgqz`kvS\
  emNZcHQWBLO9HH5EH3AH34H36R32`90nAAhBGfBOoCHmEAlE4k\
  JGcNTYaeTmsNtzHgzJ`tJapKaiKaeLc_LcWNdQNdLOdGOeCQe7\
  Qe4Qg6Nh9KjBHkCFmFCoHBpJ9rL6tO4uQ1vT0xW0zX0z_0zb0z\
  c0zh0zp5zx4zz2zz2zz1zz1zz0zz0zz0zz0zz0zz0zz0zz0zz0\
  zz0zz1zz7zzCzzJzzQzzWzzbzzizzpzznzzmzxmzpkzpktpitp\
  htphtpftpftpetpctpczpbzpbzpYzpUzpQzpLzsHzqGtpGtnFt\
  nFtmEtkEtkCtiCzhBzhBzfAzeAzeAzcBrbBj`BzLpS_xAnzEiz\
  GexK`tNXqPTpmzzozppyYrxHrv2hq9amEVhKOcQH_XBWbAUcAT\
  e9Rf9Qh9Oi8Nk8Lm8KnKJbWJR`FUdCXeA_h6`k4co1fr0hg6eZ\
  CbQJ_HRXAYU3eR3mQ3BJF9WY6hr4vz1zz0xz0mz0cu0UzAQzTK\
  zmFzzpzyFznKtcRkUXdKcYBiQ2qK2cE2R92F5244103963GK3O\
  _3Yp3Up3Qp5Lp9HpEEzJAzO6zQ6zdEzZ4iaCveAxj0yo0zkBch\
  OHeb0eX1dR5cL9cFCaAG`5KZ0OZ0NY0zY1zW1zW2zV4zU5zS5z\
  P5zN5zL5zJ5zz40zR0zq0zf0zX0zNzzEzz5zz0zz0zzszzmzzh\
  zzbzzYzzUzzOzzKzzGzzCzz9z }

frm:MandelbrotBC3   { ; by several Fractint users
  e=p1, a=imag(p2)+100
  p=real(p2)+PI
  q=2*PI*fn1(p/(2*PI))
  r=real(p2)+PI-q
  Z=C=Pixel:
    Z=log(Z)
    IF(imag(Z)>r)
      Z=Z+flip(2*PI)
    ENDIF
    Z=exp(e*(Z+flip(q)))+C
  |Z|<a }

END PARAMETER FILE=========================================