pagetop 
Dec. 2, 2014: The Great Eructor Nov. 26 Dec. 5 2014 FOTD Home
  Rating A-6, M-6

the great eructor

Fractal visionaries and enthusiasts:  

Believe it or not, today's image shows part of Seahorse Valley of the classic Mandelbrot set.  The unfamiliarity is due to the orientation of the image, which is sliced in the Oblate direction, defined by the real(Z) and imag(C) axes.

Since the overall shape reminds me of a hulking figure, I named the scene "The Great Eructor".  The name will make more sense once the meaning of the word 'eruct' is considered.

I found nothing unusually worthwhile in either the art or math, so I could rate the image no higher than a pair of sixes.  The calculation time of 3-3/4 minutes borders on slowness, especially for such an average scene.  But the web sites can take away most of this viewing hassle.

The day dawned mostly clear, but clouds moved in during the morning and snow began by 11am, building up to around 3cm by afternoon.  The fractal cats gave the weather a quick check, then settled down for their long winter's naps.  The humans, with another busy day on their hands, had little time to note the outside conditions.

The next FOTD will be posted, maybe soon, maybe not so soon.  Until this widely anticipated celestial moment arrives, take care, and why has no one suggested applying the full force of science and technology to our current intractable social problems?

Jim (with another good idea) Muth
jimmuth@earthlink.net


START PARAMETER FILE=======================================

The_Great_Eructor  { ; time=0:03:45.00 SF5 at 2000MHZ
  reset=2004 type=formula formulafile=basicer.frm
  formulaname=SliceJulibrot4 passes=1
  center-mag=1.46624/0/27.08442/0.5632/90/0
  params=0/0/90/0/-0.75/0/0/0/2/0 float=y
  maxiter=32767 inside=0 logmap=3 periodicity=6
  colors=000AqvFptKorOnpTmnXllakjfjhjifohdsgcwhbzibz\
  ibzjbwkbtkbqlbmmbjmbhnbeobbob`pbZpb_m``jZagXbdWcaU\
  dZSeWQeTPfQNgNLhKJiHIjEGkBEl8Cl5Bh5Id5P`5VX5aT5gP5\
  nL5rMAmNAhOAcPAZQAURAPSAMTAKUAMUAPUARUAUUAWVAZWA`V\
  AcUAeTAhSAjRAlQAoPAqOBsNCpMDmLEjKFiJGiIHiHImFJpCKs\
  CLqDMoDNmEOkEPiFQgFQeGPcGOaHN_HMYILWIKUIJSIIQIGOIF\
  MHEKHDIHCGHBEHADG9CG8CF7CE6CD5BC4BB3BA2B91B80A70A6\
  0A50A509609609709709808808908908A08A0DB0HC0LE0QG0U\
  I0YK0bM0fO0jQ0oS0sU0wU0vU0uU0tU0sU0rU0qU0pU0oU0nU0\
  mU0lU0kU0jU0iU0hU0gU0fT0eS0dR0cQ1bP2aO3`M4_L6ZK8YJ\
  AXICWGEYHGWHIVHKUHMTHOSHQRHSQHUPHWOHXNHYMHZLH_KH`J\
  HaIHbHHcGHdFHeEHfDHgCHiBHjAHl9Hm8Ho7Ho6Hq5Hr4Gt1Hr\
  3Ip4Io5Jm7Jl8Kj9KhALfCLeDMdEMcFNbHNaIO_JPZKPYMQXNQ\
  WORVPRTRSSSSRTTQUTPWUOXUNYVLZcK`cJacIbcHccGecEffDg\
  iChmBjmAko9ls5vv8mzBez6SzEYzLbzTgz_mzgrzoxznwzmwzl\
  wzzzzzzzzzzzzzzzzzzzzzzzz }

frm:SliceJulibrot4   {; draws all slices of Julibrot
  pix=pixel, u=real(pix), v=imag(pix),
  a=pi*real(p1*0.0055555555555556),
  b=pi*imag(p1*0.0055555555555556),
  g=pi*real(p2*0.0055555555555556),
  d=pi*imag(p2*0.0055555555555556),
  ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g),
  sg=sin(g), cd=cos(d), sd=sin(d),
  p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd),
  q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd),
  r=u*sg+v*ca*sb*cg, s=v*sin(a), esc=imag(p5)+9
  c=p+flip(q)+p3, z=r+flip(s)+p4:
  z=z^(real(p5))+c
  |z|< esc }

END PARAMETER FILE=========================================