Dec. 2, 2014: The Great Eructor | Nov. 26 | Dec. 5 | 2014 | FOTD Home |
Fractal
visionaries
and enthusiasts:
Believe it or not, today's image shows part of Seahorse Valley of the
classic Mandelbrot set. The unfamiliarity is due to the
orientation of the image, which is sliced in the Oblate direction,
defined by the real(Z) and imag(C) axes.
Since the overall shape reminds me of a hulking figure, I named the
scene "The Great Eructor". The name will make more sense once
the
meaning of the word 'eruct' is considered.
I found nothing unusually worthwhile in either the art or math, so I
could rate the image no higher than a pair of sixes. The
calculation time of 3-3/4 minutes borders on slowness, especially for
such an average scene. But the web sites can take away most
of
this viewing hassle.
The day dawned mostly clear, but clouds moved in during the morning and
snow began by 11am, building up to around 3cm by afternoon.
The
fractal cats gave the weather a quick check, then settled down for
their long winter's naps. The humans, with another busy day
on
their hands, had little time to note the outside conditions.
The next FOTD will be posted, maybe soon, maybe not so soon.
Until this widely anticipated celestial moment arrives, take care, and
why has no one suggested applying the full force of science and
technology to our current intractable social problems?
Jim (with another good idea) Muth
jimmuth@earthlink.net
START PARAMETER FILE=======================================
The_Great_Eructor { ; time=0:03:45.00 SF5 at 2000MHZ
reset=2004 type=formula formulafile=basicer.frm
formulaname=SliceJulibrot4 passes=1
center-mag=1.46624/0/27.08442/0.5632/90/0
params=0/0/90/0/-0.75/0/0/0/2/0 float=y
maxiter=32767 inside=0 logmap=3 periodicity=6
colors=000AqvFptKorOnpTmnXllakjfjhjifohdsgcwhbzibz\
ibzjbwkbtkbqlbmmbjmbhnbeobbob`pbZpb_m``jZagXbdWcaU\
dZSeWQeTPfQNgNLhKJiHIjEGkBEl8Cl5Bh5Id5P`5VX5aT5gP5\
nL5rMAmNAhOAcPAZQAURAPSAMTAKUAMUAPUARUAUUAWVAZWA`V\
AcUAeTAhSAjRAlQAoPAqOBsNCpMDmLEjKFiJGiIHiHImFJpCKs\
CLqDMoDNmEOkEPiFQgFQeGPcGOaHN_HMYILWIKUIJSIIQIGOIF\
MHEKHDIHCGHBEHADG9CG8CF7CE6CD5BC4BB3BA2B91B80A70A6\
0A50A509609609709709808808908908A08A0DB0HC0LE0QG0U\
I0YK0bM0fO0jQ0oS0sU0wU0vU0uU0tU0sU0rU0qU0pU0oU0nU0\
mU0lU0kU0jU0iU0hU0gU0fT0eS0dR0cQ1bP2aO3`M4_L6ZK8YJ\
AXICWGEYHGWHIVHKUHMTHOSHQRHSQHUPHWOHXNHYMHZLH_KH`J\
HaIHbHHcGHdFHeEHfDHgCHiBHjAHl9Hm8Ho7Ho6Hq5Hr4Gt1Hr\
3Ip4Io5Jm7Jl8Kj9KhALfCLeDMdEMcFNbHNaIO_JPZKPYMQXNQ\
WORVPRTRSSSSRTTQUTPWUOXUNYVLZcK`cJacIbcHccGecEffDg\
iChmBjmAko9ls5vv8mzBez6SzEYzLbzTgz_mzgrzoxznwzmwzl\
wzzzzzzzzzzzzzzzzzzzzzzzz }
frm:SliceJulibrot4 {; draws all slices of Julibrot
pix=pixel, u=real(pix), v=imag(pix),
a=pi*real(p1*0.0055555555555556),
b=pi*imag(p1*0.0055555555555556),
g=pi*real(p2*0.0055555555555556),
d=pi*imag(p2*0.0055555555555556),
ca=cos(a), cb=cos(b), sb=sin(b), cg=cos(g),
sg=sin(g), cd=cos(d), sd=sin(d),
p=u*cg*cd-v*(ca*sb*sg*cd+ca*cb*sd),
q=u*cg*sd+v*(ca*cb*cd-ca*sb*sg*sd),
r=u*sg+v*ca*sb*cg, s=v*sin(a), esc=imag(p5)+9
c=p+flip(q)+p3, z=r+flip(s)+p4:
z=z^(real(p5))+c
|z|< esc }
END PARAMETER FILE=========================================